首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55443篇
  免费   6753篇
  国内免费   4699篇
电工技术   5781篇
技术理论   2篇
综合类   9016篇
化学工业   2781篇
金属工艺   1557篇
机械仪表   4239篇
建筑科学   4742篇
矿业工程   1653篇
能源动力   1594篇
轻工业   3516篇
水利工程   1725篇
石油天然气   2056篇
武器工业   896篇
无线电   6668篇
一般工业技术   4913篇
冶金工业   1413篇
原子能技术   755篇
自动化技术   13588篇
  2024年   101篇
  2023年   699篇
  2022年   1247篇
  2021年   1494篇
  2020年   1546篇
  2019年   1400篇
  2018年   1382篇
  2017年   1748篇
  2016年   1881篇
  2015年   2013篇
  2014年   3030篇
  2013年   3181篇
  2012年   3983篇
  2011年   4350篇
  2010年   3358篇
  2009年   3644篇
  2008年   3676篇
  2007年   4450篇
  2006年   3919篇
  2005年   3341篇
  2004年   2749篇
  2003年   2291篇
  2002年   1859篇
  2001年   1603篇
  2000年   1376篇
  1999年   1110篇
  1998年   882篇
  1997年   795篇
  1996年   700篇
  1995年   630篇
  1994年   523篇
  1993年   380篇
  1992年   347篇
  1991年   278篇
  1990年   221篇
  1989年   215篇
  1988年   143篇
  1987年   76篇
  1986年   41篇
  1985年   36篇
  1984年   32篇
  1983年   33篇
  1982年   26篇
  1981年   14篇
  1980年   17篇
  1979年   20篇
  1978年   6篇
  1977年   7篇
  1976年   8篇
  1959年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
郭昊 《中国矿业》2021,30(S1):463-466
Riemann-Liouville分数阶微积分算子是一类带有一个函数的分数阶微积分算子的特殊情形,以Riemann-Liouville分数阶微积分算子的积分中值定理和微分中值定理为基础,我们得到了一类带有一个函数的分数阶微积分算子的积分中值定理和微分中值定理,并给出其在计算方面的一些应用。  相似文献   
5.
磨矿动力学是描述被磨物料的磨碎速率与磨矿时间之间关系规律的一种数学模型,对分析物料在磨矿过程中的粒级及能量变化具有重要作用。为充分发挥磨矿动力学在磨矿过程中的作用,论文在分析国内外研究现状的基础上,系统介绍了两种典型的磨矿动力学模型:m阶磨矿动力学模型和磨矿总体平衡动力学模型,分析了模型中各参数的含义;以磨矿总体平衡动力学模型为重点,分析了破碎速率函数和破碎分布函数的求解方式,包括零阶产出率法、奥-勒理论简算法、卡普尔G-H算法以及经验公式法等;从物料性质、磨矿介质及配比、磨矿方式及参数、化学添加剂等几个方面分析了影响磨矿动力学模型的因素;指出了磨矿动力学模型在矿物加工工程领域的应用现状并对其未来的研究方向提出展望。研究表明磨矿动力学在矿物加工领域具有广泛而重要的应用,为进一步改善磨矿工艺提供了理论依据。  相似文献   
6.
7.
The deterministic and probabilistic prediction of ship motion is important for safe navigation and stable real-time operational control of ships at sea. However, the volatility and randomness of ship motion, the non-adaptive nature of single predictors and the poor coverage of quantile regression pose serious challenges to uncertainty prediction, making research in this field limited. In this paper, a multi-predictor integration model based on hybrid data preprocessing, reinforcement learning and improved quantile regression neural network (QRNN) is proposed to explore the deterministic and probabilistic prediction of ship pitch motion. To validate the performance of the proposed multi-predictor integrated prediction model, an experimental study is conducted with three sets of actual ship longitudinal motions during sea trials in the South China Sea. The experimental results indicate that the root mean square errors (RMSEs) of the proposed model of deterministic prediction are 0.0254°, 0.0359°, and 0.0188°, respectively. Taking series #2 as an example, the prediction interval coverage probabilities (PICPs) of the proposed model of probability predictions at 90%, 95%, and 99% confidence levels (CLs) are 0.9400, 0.9800, and 1.0000, respectively. This study signifies that the proposed model can provide trusted deterministic predictions and can effectively quantify the uncertainty of ship pitch motion, which has the potential to provide practical support for ship early warning systems.  相似文献   
8.
In the present investigation, systematic grinding experiments were conducted in a laboratory ball mill to determine the breakage properties of low-grade PGE bearing chromite ore. The population balance modeling technique was used to study the breakage parameters such as primary breakage distribution (Bi, j) and the specific rates of breakage (Si). The breakage and selection function values were determined for six feed sizes. The results stated that the breakage follows the first-order grinding kinetics for all the feed sizes. It was observed that the coarser feed sizes exhibit higher selection function values than the finer feed size. Further, an artificial neural network was used to predict breakage characteristics of low-grade PGE bearing chromite ore. The predicted results obtained from the neural network modeling were close to the experimental results with a correlation of determination R2 = 0.99 for both product size and selection function.  相似文献   
9.
10.
A hybrid system with jointed battery and PEMFC is popular and of great potential in New Energy Vehicle (NEV) application. However, reliability and efficiency remain to be improved for commercial products. To reflect the complicated physics inside the proton exchange membrane fuel cell (PEMFC), the PEMFC model consisting of inner muti-physics process and other accessories was built, then a complete hybrid system was established when a matched battery, DC/DC, regenerative braking were taken into consideration. Based on the above model, the stack state and system performance under standard cycle for heavy duty vehicle-CWTVC were obtained. According to the simulation results, fuel cell states such as pressure, water content and voltage suffers severe oscillation with external load, especially in the highway cycle. Membrane electrode assembly (MEA) suffers from pressure impact with average value of more than 24 kPa in highway cycle. In the aspect of relative humidity, the PEMFC stack is most threatened in road cycle. As for the hybrid system, its efficiency and state of charge (SOC) fluctuation perform worst in urban cycle and road cycle respectively, while its highest efficiency occurs in road test. Operating mode of fuel cell has influence on hybrid system. When 3-level mode of fuel cell output was applied, the efficiency increased to its peak value at medium level of 28 kW and then declined gradually. H2 consumption had an opposite trend compared to efficiency. In the aspect of battery SOC, it declines in operating process and its fluctuations decreases when medium level got bigger. The 3-level mode and 4-level mode were compared using this model. It can be concluded that although 3-level mode performs slightly better in hybrid system efficiency, H2 consumption, pressure impact, it does not have absolute advantage over 4-level mode in other indicators.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号